© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

BBA 46467

INHIBITION OF NITROGENASE-CATALYZED REDUCTIONS

J. C. HWANG*, C. H. CHEN** and R. H. BURRIS

The Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisc. 53706 (U.S.A.)

(Received July 24th, 1972)

SUMMARY

Inhibition of nitrogenase-catalyzed reductions was studied under such conditions that the concentration of electron acceptors and inhibitors did not affect nitrogenase-catalyzed ATP hydrolysis, and the concentration of the electron acceptor was at least 1.8 times its Michaelis constant to reduce the effect of H_2 evolution. Thus, the effects were centered on the reduction site.

Based on Lineweaver-Burk plots, CO was noncompetitive with N_2 , acetylene and NaN_3 and did not inhibit H_2 evolution; H_2 inhibited N_2 fixation competitively, but it did not inhibit reduction of azide, acetylene, cyanide, isocyanide, and H^+ ; acetylene and cyanide were noncompetitive with N_2 ; acetylene and azide acted noncompetitively with each other; cyanide and methylisocyanide were competitive with NaN_3 . According to these observations, the following five sites or modified sites are proposed for the nitrogenase complex: (1) N_2 and H_2 site, (2) acetylene site, (3) azide, cyanide and methylisocyanide site, (4) CO site, (5) H^+ site.

INTRODUCTION

Reactions catalyzed by nitrogenase require ATP, a reductant such as $Na_2S_2O_4$ or reduced ferredoxin, Mg^{2+} , and an electron acceptor such as N_2 . Nitrogenase is inhibited by a variety of compounds¹, and in the current work we have examined how these inhibitors influence reductions catalyzed by a highly active nitrogenase carried by particles from *Azotobacter vinelandii* (certain points also were checked with extracts from *Clostridium pasteurianum*).

Nitrogenase has broad substrate specificity, and nitrous oxide², azide^{3,4}, acetylene^{3,5,6}, cyanide⁷ and methylisocyanide⁸ not only inhibit N_2 reduction but also serve as substrates for nitrogenase. The question is examined whether or not compounds which function both as substrates and inhibitors for nitrogenase all operate in the same way, and whether or not they differ in action from an inhibitor such as CO which is not reduced by nitrogenase.

^{*} Present address: Corporate Research Laboratory, Allied Chemical Corporation, Morristown, N. J. 07960, U.S.A.

^{**} Present address: Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pa. 19140, U.S.A.

MATERIALS AND METHODS

Chemicals

N₂, H₂, argon, acetylene, CO, ATP, and creatine kinase were obtained as high purity chemicals from commercial sources and creatine phosphate⁹ and methyl isocyanide¹⁰ were prepared.

Preparations from A. vinelandii

Growth of A. vinelandii and preparation of cell-free extracts were described previously¹¹. The A. vinelandii nitrogenase complex was prepared as follows¹¹: a crude extract obtained by breaking the cells with a French pressure cell was dialyzed anaerobically, heated under H_2 at 60 °C for 10 min and centrifuged. The supernatant was treated with streptomycin sulfate. The resultant supernatant was centrifuged at $144000 \times g$ for 1 h, and the dark brown precipitate obtained was resuspended in buffer and was designated as P_{144-1} . Suspensions of P_{144-1} could fix 60–100 nmoles N_2 per mg of protein per min. All operations were performed anaerobically. Either freshly prepared P_{144-1} or P_{144-1} which had been stored in liquid N_2 was used; the preparations were stable for months in liquid N_2 .

Preparations from C. pasteurianum

Cultures of *C. pasteurianum* W5 were grown with N_2 as the sole source of N_2^{11} in a 180-l glass-lined fermentor. The cells were dried in a rotary vacuum evaporator with the bath at 40–45 °C, and were stored at room temperature under vacuum. Cell-free extracts were prepared by autolysis of the dried cells according to the method of Carnahan *et al.*¹² in 0.025 M Tris–HCl buffer, pH 7.4. The dark brown supernatant constituted nitrogenase with specific activities ranging from 13 to 16 nmoles N_2 fixed per mg of protein per min. Preparations were used fresh or were stored in liquid N_2 .

Analytical

Typical reaction mixtures used in these studies contained in 1 ml: 5 μ moles ATP, 5 μ moles MgCl₂, 0.25 mg creatine kinase, 50 μ moles Tris-HCl buffer, pH 7.4, 15 μ moles Na₂S₂O₄, 0.15 ml enzyme source and 35 μ moles creatine phosphate. The gas phase is indicated in the text and legends; argon was used as a filling gas to give 1 atm pressure. The concentration of the electron acceptor used was at least 1.8 times its K_m to decrease H₂ evolution; relatively more H₂ is evolved at low concentrations of the electron acceptor. The concentrations of the electron acceptor or inhibitor used did not inhibit nitrogenase-catalyzed ATP hydrolysis; thus, the effects were centered on the reduction site involved. The incubation temperature was 30 °C, and the reaction time generally was 15 min. The P₁₄₄₋₁ fraction of A. vinelandii was used, and in a tew experiments a crude extract from C. pasteurianum was compared with the A. vinelandii enzyme complex. All the gases were mixed with a single measuring manometer to assure accuracy. Because they were needed in low concentration, CO and acetylene were diluted with argon before being mixed with the other desired gases.

N₂ fixation and azide reduction were assayed by measuring the NH₃ formed. Reductions of acetylene, cyanide and methyl isocyanide were determined by gas chromatographic analyses of ethylene or methane as products. Creatine formation

from creatine phosphate served as an index of ATP hydrolysis. Details of these assays were described previously¹¹.

Treatment of kinetic data

The nature of the various inhibitions was determined from double reciprocal plots of activity and substrate concentration in the presence of different levels of inhibitor. Kinetic data were fitted to appropriate rate equations with computer programs^{13,14} unless noted otherwise. Data were fitted to Equation 1 by the method of least squares $(v = \text{velocity}, V = \text{maximum velocity}, A = \text{substrate concentration}, K = \text{the Michaelis constant } K_m$).

$$v = \frac{VA}{K+A} \tag{I}$$

Equal variance for the velocities was assumed. Calculations by computer conformed to the Fortran IV program of Cleland^{13,14} which furnishes values for K, V, K/V, 1/V and standard errors of the estimates. The slopes (K/V) and intercepts (1/V) were plotted for the various substrate concentrations. Data fitting a linear competitive inhibition were fitted to Equation 2 and for linear non-competitive inhibition to Equation 3.

$$v = \frac{VA}{K(I + I/K_{is}) + A} \tag{2}$$

$$v = \frac{VA}{K(1 + I/K_{is}) + A(1 + I/K_{ii})}$$
(3)

Experimental points are recorded in the figures, and the plotted lines were calculated by the computer program which includes all data and gives greatest weight to the highest velocities and least weight to the lowest velocities (lowest velocities carry the greatest intrinsic error in measurement of initial velocities). The lines computed for the highest inhibitor concentrations (lowest velocities) in some instances have all data points on the same side of the line, because all points in the figure are considered in the computer program. In these cases, visual plots of the lines (broken lines) representing high inhibitor concentrations have been included tor comparison.

RESULTS

Nitrogenase catalyzes reduction of a number of compounds. In the absence of electron acceptors the electrons are transferred to H^+ to produce H_2 . In the presence of N_2 , H_2 evolution decreased as N_2 fixation increased in response to an increasing pN_2 up to 1 atm of N_2 (Fig. 1). The ratio of H_2 evolved per 1/3 N_2 fixed decreased rapidly from 8.92 at a pN_2 of 0.032 atm to 0.90 at a pN_2 of 0.2 atm, and 0.60 at a pN_2 of 0.4 atm. This implies that H^+ and N_2 compete for a low potential compound functional in the formation of H_2 and NH_3 . Since the nitrogenase-catalyzed H_2 evolution could not be suppressed completely under the conditions studied, the concentration of the electron acceptor furnished in inhibition studies was at least 1.8 times its K_m to decrease H_2 evolution and thus to reduce the complications introduced by H_2 evolution.

Fig. 2 shows the effect of H_2 on N_2 fixation. 50% inhibition of N_2 fixation was observed with 0.17 atm H_2 in the presence of 0.10 atm N_2 and with 0.33 atm H_2 in the presence of 0.30 atm N_2 . Nitrogenase-catalyzed ATP hydrolysis was not inhibited appreciably by H_2 .

Fig. 3 verifies that H_2 inhibition of N_2 fixation is competitive. In this experiment, the maximal H_2 evolved in the absence of N_2 was approximately 0.2 ml in a 20-ml bottle, or only 1% of the space. 1% of H_2 inhibits N_2 fixation in the presence of 0.2 atm of N_2 only about 2%, and inhibition by 1% H_2 at higher pN_2 values is negligible. Therefore, the evolved H_2 did not constitute a product inhibitor. The observation of competitive inhibition confirmed many earlier investigations, e.g. Strandberg and Wilson¹⁵.

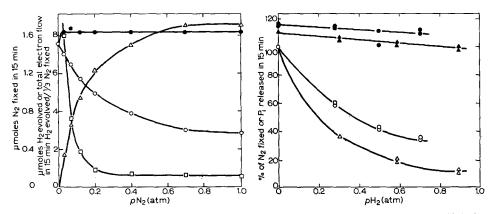


Fig. 1. Effect of pN_2 on H_2 evolution, N_2 reduction, total electron flow, and H_2 evolved/1/3 N_2 fixed. $\triangle - \triangle$, N_2 fixed; $\bigcirc - \bigcirc$, H_2 evolved; $\bullet - \bullet$, total electron flow; $\Box - \Box$, H_2 evolved/1/3 N_2 fixed.

Fig. 2. Effect of H_2 on N_2 fixation and ATP hydrolysis by nitrogenase. N_2 fixation under 0.1 or 0.3 atm N_2 , and P_1 released by nitrogenase under argon were accepted as 100%. $\circ - \circ$, % of N_2 fixed under 0.3 atm N_2 ; $\triangle - \triangle$, % of N_2 fixed under 0.1 atm N_2 ; $\bullet - \bullet$, % of P_1 released under 0.3 atm N_2 ; $\triangle - \triangle$, % of P_1 released under 0.1 atm N_2 .

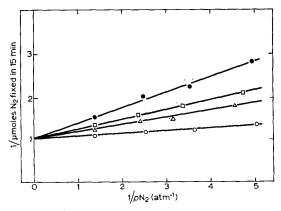


Fig. 3. H₂ inhibition of N₂ fixation in P₁₄₄₋₁ from A. vinelandii. Data fitted to Eqn 2. $\bigcirc -\bigcirc$, control $(pH_2 \ 0 \ \text{atm})$; $\triangle -\triangle$, $pH_2 \ 0.1 \ \text{atm}$; $\Box -\Box$, $pH_2 \ 0.18 \ \text{atm}$; $\bigcirc -\bigcirc$, $pH_2 \ 0.29 \ \text{atm}$.

TABLE I EFFECT OF H_2 ON AZIDE REDUCTION BY PREPARATIONS FROM A. VINELANDII P_{144_1} , 0.51 mg of protein per ml of reaction mixture.

pH_2 (atm)	NH ₃ form	ed in 15 min f	rom	
	1 mM azid	le	4 mM azid	le
	μmoles	%	μmoles	%
0.00	0.615	100	1.10	100
0.30	0.610	99	1.05	96
0.61	0.620	100	1.05	96
1.00	0.610	99	1.00	91

TABLE II

EFFECT OF H_2 ON N_2 FIXATION AND AZIDE REDUCTION BY A CRUDE EXTRACT FROM C. PASTEURIANUM

Crude extract containing 3.66 mg of protein per ml of reaction mixture was made by the autolysis of dried cells of *C. pasteurianum* in 0.025 M Tris-HCl buffer, pH 7.4.

pH_2 (atm)	NH ₃ form	ed in 15 min f	rom	
	0.2 atm N	2	2 mM azio	le
	μmoles	%	μmoles	%
0	1.468	100	1.10	100
0.3	1.354	92	1.12	100
0.6	1.084	72	1.08	98
0.8	0.940	64		
1.0			1.04	95

TABLE III

EFFECT OF H₂ ON ETHYLENE FORMATION FROM ACETYLENE BY A CRUDE EXTRACT OF C. PASTEURIANUM AND BY A PURIFIED FRACTION, P_{144_1}, FROM A. VINELANDII

C. pasteurianum crude extract contained 3.66 mg of protein per ml of reaction mixture. A. vinelandii, P_{144-1} , contained 0.82 mg of protein per ml of reaction mixture.

pH_2 , (atm)	Ethylene fo	ormed in 15 mi	n from 0.021 atm a	cetylene by
	C. pasteur crude extr	•	A. vineland P _{144_1}	dii,
	μmoles	%	μmoles	%
0	3.08	100	4.00	100
0.31	3.26	106	4.08	102
0.51	3.25	105	4.00	100
0.86	3.30	107	4.10	103

TABLE IV

EFFECT OF H_2 ON METHANE FORMATION FROM CYANIDE AND ON ATP HYDROLYSIS BY NITROGENASE FROM A. VINELANDII

P_{144_1}, 0.9 mg of protein per ml of reaction mixture.

pH_2 (atm)	Methane	formed or	ATP hydroly	zed in 16	min from			
	1 mM cy	anide			3 mM cyc	anide		
	Methane	formed	P _i release	d	Methane	formed	P _i release	d
	nmoles	%	μmoles	%	nmoles	%	μmoles	%
0	224	100	23.2	100	320	100	25.2	100
0.3	257	115	23.4	101	325	102	24.4	97
0.6	249	111	22.2	96	343	107	27.8	110
1.0	274	122	23,3	101	360	113	25.9	103

TABLE V

EFFECT OF H_2 ON METHANE FORMATION FROM METHYL ISOCYANIDE AND ATP HYDROLYSIS BY NITROGENASE FROM A. VINELANDII

P₁₄₄₋₁, 0.89 mg of protein per ml of reaction mixture.

pH_2 , (atm)	•	ormed or ATP I mM methyl i	hydrolyzed in 15 isocyanide	
	Methane f	ormed	P _i released	!
	nmoles	%	μmoles	%
0	179	100	14.9	100
0.3	189	106	16.2	109
0.6	198	111	14.4	97
1.0	203	114	16,0	107

TABLE VI

EFFECT OF CO ON N_2 FIXATION AND ATP HYDROLYSIS BY NITROGENASE FROM A. VINELANDII

P₁₄₄_1, 0.77 mg of protein per ml of reaction mixture.

pCO (atm)	$%$ of N_2 fixed and ATP	hydrolyzed under 0.47 atm
	N ₂ fixation	P ₁ released
0	100	100
0.0008	34	98
0.0012	23	101
0.0051	6	95
0.0099	8	95
0.0198	2	94

Although H_2 competitively inhibited N_2 fixation, there was no inhibition of azide reduction by H_2 (Table I). Likewise, N_2 fixation by an extract from C. pasteurianum was inhibited by H_2 , but H_2 had no effect on azide reduction (Table II). Neither did H_2 inhibit ethylene formation from acetylene by nitrogenase from C. pasteurianum nor A. vinelandii (Table III). Finally, H_2 did not inhibit cyanide or methylisocyanide reduction or nitrogenase-catalyzed ATP hydrolysis (Table IV, Table V). In fact, 1.0 atm H_2 enhanced formation of methane by 22 and 13% from 1 and 3 mM cyanide, respectively, and by 14% from 1 mM methylisocyanide.

CO is a potent inhibitor of N_2 fixation. A concentration of CO as low as 0.0008 atm reduced N_2 fixation to 34% of the control, and 0.005 atm CO completely

TABLE VII

EFFECT OF CO ON AZIDE REDUCTION AND ATP HYDROLYSIS BY NITROGENASE FROM A. VINELANDII

P_{144}_{-1} , 0.77 mg of	protein per ml of	f reaction mixture.
-----------------------------	-------------------	---------------------

pCO (atm)	$\%$ of NH $_3$ formed and AT	P hydrolyzed in 5 mM azide
	NH ₃ formed	Pi released
0	100	100
0.0133	5	87
0.0233	0	93
0.0973	0	92
0.1930	0	86
0.7130	0	88
1.0000	0	93

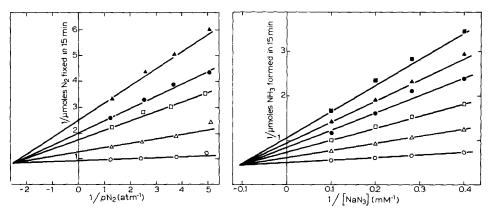


Fig. 4. CO inhibition of N₂ fixation in P_{144_1} from A. vinelandii. Data fitted to Eqn 3. $\bigcirc -\bigcirc$, control (pCO 0 atm); $\triangle -\triangle$, pCO 0.00021 atm; $\Box -\Box$, pCO 0.00045 atm; $\bigcirc -\bigcirc$, pCO 0.00058 atm; $\triangle -\triangle$, pCO 0.00084 atm.

Fig. 5. CO inhibition of azide reduction in A. vinelandii P_{144_1} . Data fitted to Eqn 3. $\bigcirc -\bigcirc$, control (pCO 0 atm); $\triangle -\triangle$, pCO 0.00022 atm; $\Box -\Box$, pCO 0.00042 atm; $\bigcirc -\bigcirc$, pCO 0.00064 atm; $\triangle -\triangle$, pCO 0.00078 atm; $\Box -\Box$, pCO 0.00099 atm.

inhibited N_2 fixation (Table VI). In contrast, nitrogenase-catalyzed ATP hydrolysis was not affected. Similarly, although 0.013 atm CO completely abolished the formation of NH_3 from azide, a full atmosphere of CO had no effect on ATP hydrolysis by nitrogenase (Table VII). Thus, CO specifically influences the reduction sites without blocking the ATP-hydrolyzing site of nitrogenase. Figs 4, 5 and 6 show noncompetitive inhibition of N_2 fixation, azide reduction and acetylene reduction by CO, respectively.

Acetylene competes for electrons with N_2 and thus inhibits N_2 fixation. Acetylene at 0.01 atm inhibited N_2 fixation by 80, 70 and 57% in the presence of 0.2, 0.4

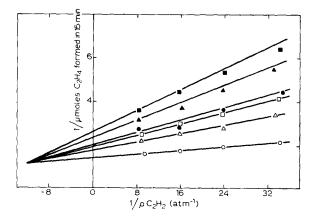


Fig. 6. CO inhibition of ethylene from acetylene by A. vinelandii P_{144_1} . Data fitted to Eqn 3. $\bigcirc -\bigcirc$, control (pCO 0 atm); $\triangle -\triangle$, pCO 0.00025 atm; $\Box -\Box$, pCO 0.00042 atm; $\bigcirc -\bigcirc$, pCO 0.0005 atm; $\triangle -\triangle$, pCO 0.00079 atm; $\Box -\Box$, pCO 0.00098 atm.

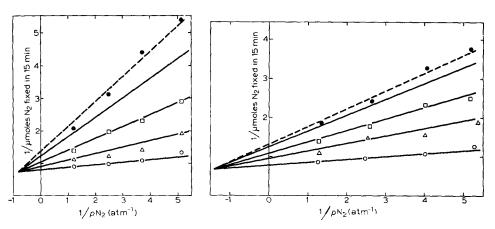


Fig. 7. Inhibition by acetylene of N_2 fixation by A. vinelandii P_{144-1} . Data fitted to Eqn 3. The solid lines were derived from computer program results. The dotted line was plotted visually. $\bigcirc -\bigcirc$, control $(pC_2H_2\ 0\ atm)$; $\triangle -\triangle$, $pC_2H_2\ 0.0031\ atm$; $\Box -\Box$, $pC_2H_2\ 0.0067\ atm$; $\bullet -\bullet$, $pC_2H_2\ 0.0122\ atm$.

Fig. 8. Acetylene inhibition of N₂ fixation by C. pasteurianum crude extract. Data fitted to Eqn 3. The dotted line was plotted visually. $\bigcirc -\bigcirc$, control $(pC_2H_2\ 0\ atm)$; $\triangle -\triangle$, $pC_2H_2\ 0.0033\ atm$; $\Box -\Box$, $pC_2H_2\ 0.0065\ atm$; $\bigcirc -\bigcirc$, $pC_2H_2\ 0.0095\ atm$.

and 0.8 atm N_2 , respectively. Plots of reciprocals of velocities of N_2 fixation vs the reciprocals of N_2 partial pressures indicated acetylene was a noncompetitive inhibitor (Fig. 7). Noncompetitive inhibition of N_2 fixation by acetylene also was demonstrated with a crude extract from C. pasteurianum (Fig. 8). 4.3 ATPs were required per two-electron transfer for H_2 evolution or N_2 reduction.

Azide, cyanide and isocyanide, like acetylene, are electron acceptors in nitrogenase-catalyzed reductions and inhibit N_2 fixation. Figs 9 and 10 show, respectively, that azide was a linear noncompetitive inhibitor of acetylene and that acetylene was an intersecting hyperbolic noncompetitive inhibitor of azide¹⁶. A similar experiment run in the presence of pC_2H_2 values up to 0.1 atm, which did not interrupt nitrogenase-catalyzed ATP hydrolysis, also indicated an intersecting-hyperbolic noncompetitive inhibition of azide reduction by acetylene.

A plot of reciprocals of velocities of N₂ fixation against reciprocals of N₂ con-

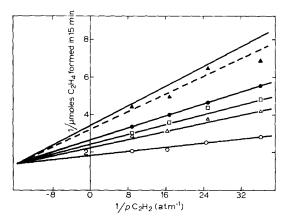


Fig. 9. Azide inhibition of acetylene reduction by A. vinelandii P_{144_1} . Data fitted to Eqn 3 The dotted line was plotted visually. $\bigcirc -\bigcirc$, control; $\triangle -\triangle$, 2.5 mM azide; $\square -\square$, 3.5 mM azide; $\bigcirc -\bigcirc$, 5 mM azide; $\triangle -\triangle$, 10 mM azide.

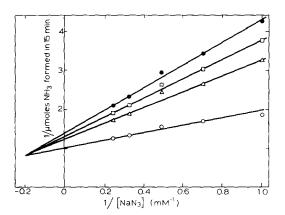


Fig. 10. Acetylene inhibition of azide reduction by A. vinelandii P_{144} . The plot was made visually. $\bigcirc -\bigcirc$, control (pC_2H_2 0 atm); $\triangle -\triangle$, pC_2H_2 0.039 atm; $\Box -\Box$, pC_2H_2 0.104 atm; $\bullet -\bullet$, pC_2H_2 0.403 atm.

centration shows noncompetitive inhibition by cyanide (Fig. 11). In this and in the following experiments, the enzyme reactions were stopped with trichloroacetic acid, and the methane formed was measured by gas chromatography. Then, saturated K_2CO_3 was added to the reaction mixtures, and the diffused NH₃ was measured colorimetrically¹¹. As cyanide reduction yields equimolar NH₃ and methane, the true N₂ fixation in the presence of HCN is indicated by the total ammonia formed minus methane formed. Both cyanide and methyl isocyanide were competitive with azide (Figs 12 and 13). In each graph the line for the highest concentration of inhibitor (minimum velocity, maximum intrinsic error) deviated from the computer-calculated

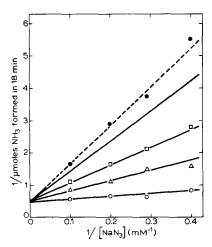



Fig. 11. Cyanide inhibition of N_2 fixation by A. vinelandii P_{144_1} . Data fitted to Eqn 3. $\bigcirc -\bigcirc$, control; $\triangle -\triangle$, 0.8 mM KCN; $\bigcirc -\bigcirc$, 1.5 mM KCN.

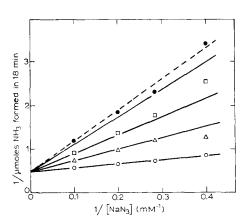


Fig. 12. Cyanide inhibition of azide reduction by A. vinelandii P_{144_1} . Data fitted to Eqn 2. The dotted line was plotted visually. $\bigcirc-\bigcirc$, control; $\triangle-\triangle$, 0.8 mM cyanide; $\Box-\Box$, 1.6 mM cyanide; $\bigcirc-\bigcirc$, 2.4 mM cyanide.

Fig. 13. Methyl isocyanide inhibition of azide reduction by A. vinelandii P_{144} . Data fitted to Eqn 2. The dotted line was plotted visually. $\bigcirc-\bigcirc$, control; $\triangle-\triangle$, 0.8 mM methyl isocyanide; $\bigcirc-\bigcirc$, 1.6 mM methyl isocyanide; $\bigcirc-\bigcirc$, 2.4 mM methyl isocyanide.

NATURE OF INHIBITION AND KINETIC CONSTANTS OF ELECTRON ACCEPTORS AND INHIBITORS For meaning of K_{is} , K_{ii} see equations in Materials and Methods cited from ref. 28. TABLE VIII

7.0	7 1.31 %						
Substrate	Innibitor:						
	N_2 (atm)	$N_3^-(mM)$	Acetylene (atm)	HCN (mM)	Methyl isocyanide (mM)	H_2 (atm)	CO (×10 ⁻⁴ atm)
Z 2	K _m : 0.122* 0.10**		Linear Linear noncompetitive noncompetitive K_{is} : 0.0021 \pm 0.0007 K_{is} : 0.15 \pm 0.03 K_{ii} : 0.019 \pm 0.009 K_{ii} : 0.61 \pm 0.08	Linear noncompetitive K_{ls} : 0.15 ± 0.03 K_{ii} : 0.61 ± 0.08		Linear competitive K_{is} : 0.112 \pm 0.003	Linear noncompetitive K_{is} : 1.14 ± 0.24 K_{ii} : 4.7 ± 0.6
Z ₃ -		K _m : 1.15* 1.43**	Intersecting hyperbolic noncompetitive K_{id} : 0.03 (intercepts) K_{id} : 0.059 (slopes)	Linear competitive K_{is} : 0.24 \pm 0.05	Linear competitive K_{is} : 0.41 \pm 0.08	No inhibition	Linear noncompetitive K_{is} : 1.14 ± 0.24 K_{ii} : 4.4 ± 0.6
Acetylene		Linear noncompetitive K_{is} : 2.7 ± 0.8 K_{ii} : 1.1 ± 0.3	$K_m: 0.015^* \\ 0.0155 \pm 0.003$			No inhibition	Linear noncompetitive K_{is} : 2.1 ± 0.5 K_{ii} : 12.9 ± 0.4
HCN				K_m : 1.28*		No inhibition	
Methyl isocyanide	nide				$K_m: 2.0^*$	No inhibition	
Nitrogenase- catalyzed ATP hydrolysis	Enhanced by N ₂	No inhibition up to 20 mM; enhanced by N ₃ -	Inhibition by acetylene above 0.1 atm	Enhanced by HCN; HCN above 3 mM decreased enhancement	Enhanced by isocyanide; above 10 mM decreased enhancement	No inhibition	No inhibition
Nitrogenase- catalyzed H ₂ evolution	Inhibited	Inhibited	Inhibited	Inhibited	Inhibited	No inhibition	No inhibition

* K., values marked with an asterisk were obtained from a visual plot by the method of Lineweaver and Burk; all the other K., K., and K.,

line. The results show that azide, cyanide and methyl isocyanide bind to the same site on the nitrogenase.

The control lines in the figures (N_2 without inhibitor) should define the K_m for N_2 . The K_m values from these lines are variable, because the N_2 concentrations used for studies of inhibitors are higher than optimal for establishing the K_m . The K_m values tor N_2 cited in Table VIII are more reliable.

DISCUSSION

 H_2 is a competitive inhibitor of N_2 fixation in N_2 fixing cells¹⁷ and in cell-free extracts^{1,15}. However, the inhibition of N_2 fixation by H_2 was described as noncompetitive in A. vinelandii cells¹⁸. Extracts from C. pasteurianum in unusually concentrated phosphate buffer (0.05 M) exhibited uncompetitive inhibition of N_2 fixation by H_2 when pyruvate was provided as substrate¹. Inhibition of N_2 fixation by the A. vinelandii P_{144-1} fraction supplied $N_2S_2O_4$ and an ATP-generating system was competitive. As reported by Hardy and Knight¹⁹, we observed no inhibition by H_2 of nitrogenase-catalyzed ATP hydrolysis. Although H_2 competitively inhibits N_2 fixation, it did not inhibit reductions of azide, acetylene, cyanide and isocyanide. N_2O , another electron acceptor as well as an inhibitor, was not tested; it had been reported that H_2 did not inhibit reduction of N_2O by soybean root nodules²⁰. Apparently the site for N_2 binding also is the site for attachment of H_2 . As H_2 does not inhibit the reduction of other electron acceptors, it follows that the sites for other electron acceptors are distinct (by modification or physical separation) from the N_2 and H_2 binding site.

CO inhibition of N_2 fixation has been reported to be noncompetitive (red clover plants²¹ and A. vinelandii cells²²) and in other instances competitive (extracts of C. pasteurianum¹ and intact Nostoc muscorum²³). CO, like H_2 , has no effect on reductant-dependent ATP hydrolysis and ATP-dependent H_2 evolution^{24,25}. Our experiments with the A. vinelandii P_{144-1} fraction showed that pCO values of 0.0051 atm and 0.0133 atm completely inhibited N_2 fixation (Gallon et al.²⁶ have found virtually complete inhibition of nitrogenase from the blue-green alga Gloeocapsa sp by 0.01 atm CO) and azide reduction, but a concentration of CO as high as 1 atm did not change the rates of nitrogenase-catalyzed ATP hydrolysis. This indicates that CO specifically influences the substrate reduction sites without blocking the ATP hydrolysis site or the H_2 evolution site of nitrogenase. Our experiments recorded in Figs 4, 5, and 6, show CO to be a noncompetitive inhibitor of N_2 fixation, azide reduction and acetylene reduction. The basis for the discrepancies in reports on the nature of CO inhibition remains to be defined.

Inhibition of N_2 fixation by acetylene in C. pasteurianum or A. vinelandii extracts was reported to be competitive⁵, but M. J. Dilworth, (unpublished) found acetylene to be a noncompetitive inhibitor of N_2 fixation by C. pasteurianum extracts. In our current work with the A. vinelandii P_{144-1} fraction and with crude extracts from C. pasteurianum supplied $Na_2S_2O_4$ and an ATP generating system, acetylene proved to be a noncompetitive inhibitor of N_2 fixation (Figs 7 and 8). As other individuals in our laboratory also have found acetylene to be a noncompetitive inhibitor, our earlier statement⁵ that acetylene is competitive with N_2 apparently was incorrect. Since H_2 affected N_2 fixation, but did not have any effect on acetylene

reduction, the site for acetylene and the site for N_2 and H_2 binding appear to be separate. The noncompetitive inhibition of N_2 fixation by acetylene and the difference in ATP requirement per two electrons transferred for N_2 and acetylene reduction also support the conclusion that the N_2 and acetylene binding sites are not the same.

Azide and acetylene were noncompetitive with each other. Whereas inhibition by azide of acetylene reduction was linear noncompetitive, the inhibition by acetylene of azide reduction appeared to be slope hyperbolic intercept hyperbolic noncompetitive (plotting either the slopes or intercepts from the Lineweaver-Burk plots against concentrations of acetylene gave a hyperbolic curve). Because acetylene inhibition of azide reduction was the only nonlinear noncompetitive inhibition observed, it will require detailed examination to establish that the effect is real rather than arising from experimental artifacts. If real, it will suggest that the reduction of azide can follow alternative pathways exhibiting differential inhibition by acetylene.

Cyanide was noncompetitive with N_2 . Both cyanide and methylisocyanide were competitive with azide. These results show that azide, cyanide and methylisocyanide bind to the same site on the nitrogenase. Gogoleva and Ivanov²⁷ observed that a variety of inhibitors, including NaN_3 and KCN, had different effects on the respiratory chain in the presence of succinate or ethanol, and they concluded that there may be two distinct pathways of electron transfer involved in N_2 reduction by A. vinelandii.

Table VIII records kinetic constants and summarizes information on the nature of inhibitors¹¹. The concentrations of the electron acceptors or inhibitors used did not inhibit nitrogenase-catalyzed ATP hydrolysis, so observations focus on reduction sites and are not complicated by interactions between the ATP-hydrolyzing site and electron acceptors or inhibitors. The K_m for N_2 obtained from computer analysis of five experiments averaged 0.10 atm N_2 (0.131±0.016; 0.059±0.008; 0.102±0.027; 0.09±0.02; 0.12±0.03), whereas an average of the K_m values obtained by the method of Lineweaver–Burk with visual plots from two other experiments gave a K_m of 0.122 atm N_2 (0.13; 0.114). The average K_m for azide from computer analysis of the experimental results was 1.43 mM (1.12±0.2; 1.7±0.4; 1.48±0.33); the K_m obtained from visual Lineweaver–Burk plots of two other experiments was 1.15 mM azide (1.15, 1.15). The K_m values for acetylene from the computer program (0.016±0.003 atm; 0.015±0.003 atm) and from Lineweaver–Burk visual plots of two other experiments (0.015 atm; 0.015 atm) were 0.0155 and 0.015, respectively.

The inhibition constant, K_{is} , for H_2 was 0.112 ± 0.003 atm H_2 ; this value was much lower than 0.3 atm, 0.32 atm and 0.55 atm H_2 reported, respectively, by Hadfield and Bulen²⁹, Dilworth *et al.*³⁰, and Lockshin and Burris¹. An inhibition constant for H_2 of 0.016 atm was reported for cell-free extracts of bacteroids from soybean root nodules³¹.

Under the conditions described (Table VIII), CO was noncompetitive with N_2 , acetylene and azide; it did not inhibit nitrogenase-catalyzed H_2 evolution and ATP hydrolysis. H_2 inhibited N_2 fixation only, and its action was competitive. Acetylene and cyanide were noncompetitive with N_2 , and acetylene showed hyperbolic noncompetitive inhibition of azide reduction. Cyanide and methyl isocyanide were competitive with azide. The site for H^+ binding or H_2 evolution could not be demonstrated, because H^+ is not limiting in the system. However, since CO does not inhibit nitrogenase-catalyzed ATP hydrolysis or H_2 evolution, apparently the CO and H^+ binding sites are separate. Based on these observations, one can propose five sites

or modified sites for binding electron acceptors or inhibitors: (1) N_2 and H_2 site; (2) azide, cyanide and methyl isocyanide site; (3) acetylene site; (4) CO site; (5) H_2 evolution site (H^+ site).

Based on thermodynamic considerations and the inhibition of H_2 evolution and ATP hydrolysis by ADP, Linde *et al.*³² proposed that there are separate enzyme sites for electron activation, H_2 evolution and N_2 reduction in N_2 -fixing organisms.

Nitrogenase from all sources contains transition metals. The triple bond or potential triple bond characteristic of nitrogenase substrates may allow their side-on-bonding to active sites; their lone electron pairs may permit end-on-bonding 7,25 . Brintzinger 33 proposed double side-on-bonding by insertion of N_2 into metal hydride bonds. These and other models proposed for the mechanism of nitrogenase function 34,35 suggest that the enzyme has multiple binding sites.

The reduction of azide and the reduction of N₂O serve as helpful examples in discussing the nature of the multiple sites of nitrogenase. Schöllhorn and Burris⁴ found a stoichiometric 1:1 relationship between NH₃ formed and N₂ evolved from azide. In two of their experiments there were 128 μ moles NH₃ per 125 μ moles N₂ and 147 μ moles NH₃ per 138 μ moles N₂ formed from azide. If azide and N₂ bind at the same site, then a portion of the N₂ formed from azide should be reduced promptly to NH₃, because the affinity of the enzyme for N₂ is 16 times that for azide¹¹. N₂ formed from azide should have close proximity to the active site and its relatively low molecular weight should give it ready access to the site. It is unlikely that a stoichiometric ratio of 1:1 for NH₃:N₂ formed would exist, if azide and N₂ bind at the same site; apparently the sites for N₂ and azide are separate. Hardy and Knight⁷ concluded from their experiments on the stoichiometry of the products from azide reduction that "the N₂ formed from azide does not appear to be in the correct position for further reaction, although it must be within 1-2 Å of the binding site". Our data show that H₂ inhibits N₂ reduction but not azide reduction, again indicating the existence of multiple binding sites.

Similar reasoning also may be applied to the formation of N_2 from N_2O . Hoch et al.²⁰ reported that H_2 did not inhibit N_2O reduction by soybean root nodules. Lockshin and Burris¹ showed that N_2O was reduced to NH_3 at about 6% the rate of N_2 fixation by extracts of C. pasteurianum. Hardy and Knight³⁶ reported that 26 μ moles of N_2 and only 0.8 μ moles of NH_3 were formed from 0.55 atm of N_2O by an extract from A. vinelandii. Assuming that N_2O and N_2 bind at the same site, the N_2 formed from N_2O would be expected to be trapped and reduced when it is formed. Contrary to this assumption and the observed competitive inhibition of N_2 fixation by N_2O , the stoichiometric data for the products of N_2O reduction suggest that there are different binding sites for N_2O and N_2 .

It is not clear whether five specific catalytic sites exist on nitrogenase or whether sites are modified in the presence of specific substrates to alter the properties of the sites. However, it is clear that the multiple reactions of nitrogenase are not catalyzed at a single, unmodified active site.

ACKNOWLEDGMENTS

The authors thank Dr W. W. Cleland for his advice concerning the analysis of data on inhibitors.

This investigation was supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison; by Public Health Service Grant AI-00848 from the National Institute of Allergy and Infectious Diseases, and by National Science Foundation Grant GB-483.

REFERENCES

- 1 Lockshin, A. and Burris, R. H. (1965) Biochim. Biophys. Acta 111, 1-10
- 2 Mozen, M. M. and Burris, R. H. (1954) Biochim. Biophys. Acta 14, 577-578
- 3 Schöllhorn, R. and Burris, R. H. (1966) Fed. Proc. 25, 710
- 4 Schöllhorn, R. and Burris, R. H. (1967) Proc. Natl. Acad. Sci. U.S. 57, 1317-1323
- 5 Schöllhorn, R. and Burris, R. H. (1967) Proc. Natl. Acad. Sci. U.S. 58, 213-216
- 6 Dilworth, M. J. (1966) Biochim. Biophys. Acta 127, 285-294
- 7 Hardy, R. W. F. and Knight Jr, E. (1967) Biochim. Biophys. Acta 139, 69-90
- 8 Kelly, M., Postgate, J. R. and Richards, R. L. (1967) Biochem. J. 102, 1C-3C
- 9 Ennor, A. H. and Stocken, L. A. (1957) Biochem. Prep. 5, 9-12
- 10 Schuster, R. E., Scott, J. E. and Casanova, J., Jr. (1966) Org. Synth. 46, 75-77
- 11 Hwang, J. C. (1968) The Nitrogen-Fixing Enzyme Complex Purification and Properties, 250 pp., Ph. D. Thesis, University of Wisconsin, Madison, Wisc.
- 12 Carnahan, J. E., Mortenson, L. E., Mower, H. F. and Castle, J. E. (1960) Biochim. Biophys. Acta 44, 520-535
- 13 Cleland, W. W. (1963) Nature 198, 463-465
- 14 Cleland, W. W. (1967) Adv. Enzymol. 29, 1-32
- 15 Strandberg, G. W. and Wilson, P. W. (1967) Proc. Natl. Acad. Sci. U.S. 58, 1404-1409
- 16 Cleland, W. W. (1963) Biochim. Biophys. Acta 67, 173-187
- 17 Bradbeer, C. and Wilson, P. W. (1963) *Metabolic Inhibitors* (Hochster, R. M. and Quastel, J. H., eds), Vol. 2, pp. 595-614, Academic Press, New York, N.Y.
- 18 Parker, C. A. and Dilworth, M. J. (1963) Biochim. Biophys. Acta 69, 152-158
- 19 Hardy, R. W. F. and Knight, Jr, E. (1966) Biochim. Biophys. Acta 122, 520-531
- 20 Hoch, G. E., Schneider, K. C. and Burris, R. H. (1960) Biochim. Biophys. Acta 37, 273-279
- 21 Lind, C. J. and Wilson, P. W. (1941) J. Am. Chem. Soc. 63, 3511-3514
- 22 Lind, C. J. and Wilson, P. W. (1942) Arch. Biochem. 1, 59-72
- 23 Burris, R. H. and Wilson, P. W. (1946) Bot. Gaz. 108, 254-262
- 24 Hardy, R. W. F., Knight, Jr, E. and D'Eustachio, A. J. (1965) Biochem. Biophys. Res. Commun. 20, 539-544
- 25 Bulen, W. A., LeComte, J. R. Burns, R. C. and Hinkson, J. (1965) in Non-Heme Iron Proteins: Role in Energy Conversion (San Pietro, A., ed.) pp. 261-274, Antioch Press, Yellow Springs, Ohio
- 26 Gallon, J. R., LaRue, T. A. and Kurz, W. G. W. (1972) Can. J. Microbiol. 18, 327-332
- 27 Gogoleva, T. V. and Ivanov, I. D. (1969) Biol. Nauki, 92-96
- 28 Cleland, W. W. (1963) Biochim. Biophys. Acta 67, 104-137
- 29 Hadfield, K. L. and Bulen, W. A. (1968) Fed. Proc. 27, 593
- 30 Dilworth, M. J., Subramanian, D., Munson, T. O. and Burris, R. H. (1965) Biochim. Biophys. Acta 99, 486-503
- 31 Koch, B., Evans, H. J. and Russell, S. (1967) Proc. Natl. Acad. Sci. U.S. 58, 1343-1350
- 32 Linde, V. R., Slepko, G. I., Raikhman, L. M., Alfimova, E. Y., Uzenskaya, A. M. and Likhtenshtein G. I. (1971) in *Nov. Izuch. Biol. Fiksatsii Azota* (Mishustin, E. N., ed.), pp. 14-18 [Chem. Abstr. 76, 96328f (1972)]
- 33 Brintzinger, H. (1966) Biochemistry 5, 3947-3950
- 34 Postgate, J. R. (1971) The Chemistry and Biochemistry of Nitrogen Fixation, 326 pp., Plenum Press, London and New York
- 35 Hardy, R. W. F., Burns, R. C. and Parshall, G. W. (1971) in *Bioinorganic Chemistry* (Gould, R. F., ed.), pp. 219-247, American Chemical Society, Washington, D. C.
- 36 Hardy, R. W. F. and Knight, Jr, E. (1966) Biochem. Biophys. Res. Commun. 23, 409-414